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Overconfidence

● MNIST, 2 layer FC network

Pereyra (Google Brain). ICRL 2017



  

Modern / Deep ANNs are Worse

Guo et al. ICRL 2017.



  

Open Set Recognition - Techniques

● Distance
● Domain
● Reconstruction
● Generative
● Information-theoretic
● Adversarial
● Confidence



  

Distance OSR

● Example distance metrics
– Mahalanobis

– Standardized Euclidean

– Euclidean

● Semantic gap
– low-level features vs high-

level concepts

– feature similarity != 
semantic similarity



  

Domain OSR

● One-class SVM – Scholkopf. 
NeurIPS 2000.



  

Reconstruction OSR

● Autocoders – learn compact data 
representation

● Greater reconstruction error for OD classes



  

● Build a probabilistic model of the data pmodel(x)

● Outliers are unlikely to have a high likelihood under the 
model

● Most generative models allow exact evaluation of pmodel(x)

Probabilistic / Generative OSR

pmodel (X∣θ)=η(X∣μ ,σ)



  

Confidence Calibration

● Better generalization

● Separate Pin and Pout using thresholding

● This assumes a relationship between uncertain 
classes and unknown classes



  

Methods of ANN Calibration

● Post-hoc (recalibration) methods
– Temperature scaling

– Histogram binning / isotonic regression (binary classification)

– Openmax

– ODIN

● Calibrated training
– Entropy regularization

– Label smoothing regularization

– Bayesian networks



  

Temperature Scaling



  

OpenMax

● Activation vector (AV): 
Penultimate ANN layer 
(prior to softmax) 

● Classes represented by a 
mean activation vector fit 
by a Weibull distribution 

● Openmax layer estimates 
probability for top few 
classes and an unknown 
unknown class

Bendale et al. Towards Open Set 
Deep Networks. CVPR 2015.



  

● Entropy regularization: neural network is trained 
to penalize confident output distributions



  

● Label smoothing regularization

CVPR 2016



  

OSR Evaluation

● Datasets split into
– ID

● Train
● Test

– OD

– Fooling / adversarial 

● Metrics
– Binary OD 

performance

– ID performance



  



  

ODIN Method

● Out-of-DIstribution 
detector for Neural 
networks

● Combines temperature 
scaling with input 
perturbations to scale 
the predictive 
distribution from a pre-
trained classifier
 

Thor’s dad



  

ODIN Method

1)Input (x) fed through classifier with temperature scaled 
softmax output

2) Pertubations generated using fast gradient sign 
method (Goodfellow 2015)

3) Outlier detection: softmax score on preturbed image 
compared to threshold



  

Input Perturbation



  

Input Perturbation

ε

Images very close in pixel space, far in feature space



  

Experimental Setup

● Networks
– DenseNet (2016)

– Wide ResNet (2016)

● Datasets (ID)
– CIFAR-10

– CIFAR-100

● Datasets (OD)
– TinyImageNet

– LSUN

– ISUN

– Gaussian / Uniform Noise

● Metrics
– FPR at 95% TPR

– Detection Error

– AUROC

– AUPR

● Baseline
– Threshold softmax 

score



  

Hyperparameter Optimization

● Randomly held out 1000 
images from each test 
set for tuning T and ε

● Grid search over 
– T: 1, 2, 5, 10, 20, 50, 100, 

200, 500, 1000

– ε: linspace([0, 0.004], 21)

● Free δ threshold 
parameter 



  

Results



  

Dataset Difficulty



  

ODIN Criticisms

● Strengths
– Simple implementation

– Works with pre-trained networks

– Does not affect the prediction accuracy for ID classification or 
change predictions

● Weaknesses
– Introduces 3 hyperparameters

– Optimize the hyperparameters on the test set

– Very weak baseline comparison

– Used different datasets for OD data



  

Key Papers

● Guo et al. On Calibration of Modern Neural Networks. ICML 2017. 
● Pereyra et al. Regularizing Neural Networks by Penalizing Confident 

Output Distributions. ICLR 2017. 
● Liang et al. Enhancing the Reliability of Out-of-Distribution Image 

Detection in Neural Networks. ICLR 2018.
● Goodfellow et al. Explaining and Harnessing Adversarial Examples. 

ICLR 2015.
● Pementel et al. A Review of Novelty Detection. Signal Processing 2014.
● Bendale et al. Towards Open Set Deep Networks. CVPR 2016.
● Szegedy et al. Rethinking the Inception Architecture for Computer 

Vision. CVPR 2016. 



  

Questions

David Burns MD PhD (c)
d.burns@utoronto.ca 

github: dmbee
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