Style Augmentation: Data augmentation via Style Randomization

Presented by Linde Hesse

Journal Club: 15-04-2019

Style Transfer¹

- Combining a content image and a style image into a stylized image
- Content Image: Typically a photograph
- Style image: Typically a painting

Stylized image

1. Exploring the structure of a real-time, arbitrary neural artistic stylization network. G. Ghiasi et all.

Style Transfer

- Compute style and content loss from pretrained loss network
- Content: related to high level features
- Style: related to low level features

Style Loss

- Content
 - Higher level features of pretrained recognition system
 - Similar content: close high level features in Euclidean space
- Style
 - Low level features of pretrained recognition system
 - Similar style: low level features share same spatial statistics
 - Spatial statistics can be represented by a Gram matrix of correlations across filters

Style Transfer Loss

Content Loss:
$$E_c \stackrel{\text{onteget Loss}}{\sum_{i \in C}} L_i \stackrel{\text{sf}}{=} f_i(x) - f_i(c) \Big|_F^2$$

Style Loss:
Style Loss: $L_S = \sum_{i \in S} \Big| G[f_i(x)] - G[f_i(s)] \Big|_F^2$

Total Loss:
Total Loss:
$$L_c(x,c) + \lambda_s L_s(x,s)$$

x = stylized image, c = content image, s = style image, f = pretrained network= relative weight of style loss λ_s = relative weight of style loss

Integration of both networks

- Style embedding
 - Vector of length 100
- Comditional instance normalization:
 - Shift and rescale activation chammels
 - Nommalize feature maps with style embedding
 - $x' = \gamma \frac{(x-\mu)}{\sigma} + \beta$
 - μ, σ : mean and std from feature map
 - γ, β : linear transformation obtained from style embedding

Style prediction network

Style Transfer

observed styles

unobserved styles

Style transfer for data augmentation

- Data augmentation: Creating new training samples from existing ones
- Commonly used:
 - Flipping, Translations, Scaling, Blurring etc.

- Style Transfer:
 - Randomizing color, texture and contrast
 - Preserving geometry

Style transfer for data augmentation

Style prediction network

Style transfer for data augmentation

Random style embedding

- ~ Sampling style embedding from probability distribution
 - Normal distribution with mean and covariance of Painter By Number style dataset
- Strength of augmentation
 - Mixstyle ambedding with ambedding of content image

$$z = \alpha N(\mu, covariance) + (1 - \alpha)P(c)$$

Style embedding

Style of content image

Experiments

- Use random style transfer as augmentation technique for
 - Image classification
 - Cross-domain classification
 - Depth estimation
- Traditional augmentation as reference
 - Horizontal flipping, small rotations, zooming, random erasing, shearing, greyscale conversion and perturbations of hue, brightness and contrast
- Hyperparameter search
 - Augmentation ratio
 - Augmentation strength (α)

Image classification

- STL-10 dataset
- 10 classes: animals and vehicles

Cross-domain classification

• Office dataset with 3 domains: Amazon, Webcam and DSLR

Task	Model	Augmentation Approach			
		None	Trad	Style	Both
	InceptionV3	0.789	0.890	0.882	0.952
	ResNet18	0.399	0.704	0.495	0.873
$AW \rightarrow D$	ResNet50	0.488	0.778	0.614	0.922
	VGG16	0.558	0.830	0.551	0.870
$DW \rightarrow A$ $AD \rightarrow W$	InceptionV3	0.183	0.160	0.254	0.286
	ResNet18	0.113	0.128	0.147	0.229
	ResNet50	0.130	0.156	0.170	0.244
	VGG16	0.086	0.149	0.111	0.243
	InceptionV3	0.695	0.733	0.767	0.884
	ResNet18	0.414	0.600	0.424	0.762
	ResNet18	0.491	0.676	0.508	0.825
	VGG16	0.465	0.679	0.426	0.752

Stylized Images

Application

- Cross-domain adaptation for MRI Breast Segmentation
 - T1 🗖 T2
- Use trained network from data augmentation paper
 - Greyscale 👝 RGB 👝 Greyscale
 - Apply same random style on each slice of 3D volume

T2-scan

Restyled images

Github Codes

- Style Augmentation: Data augmentation via Style Randomization: <u>https://github.com/philipjackson/style-augmentation</u>
- Exploring the structure of a real-time, arbitrary neural artistic stylization network:

<u>https://github.com/tensorflow/magenta/tree/master/magenta/mode</u> <u>ls/arbitrary_image_stylization</u>