
Style Augmentation: 
Data augmentation via 
Style Randomization

Presented by Linde Hesse

Journal Club: 15-04-2019



Style Transfer1

• Combining a content image and a style image into a stylized image

• Content Image: Typically a photograph

• Style image: Typically a painting

+

Content       Style            Stylized image

1. Exploring the structure of a real-time, arbitrary neural artistic stylization network. G. Ghiasi et all. 



Style Transfer

• Compute style and content 
loss from pretrained loss 
network

• Content: related to high 
level features

• Style: related to low level 
features



Style Loss
• Content

• Higher level features of pretrained recognition 
system

• Similar content: close high level features in 
Euclidean space

• Style
• Low level features of pretrained recognition 

system
• Similar style: low level features share same spatial 

statistics
• Spatial statistics can be represented by a Gram 

matrix of correlations across filters



Style Transfer Loss

Content Loss: 

Style Loss: 

Total Loss: 

  = relative weight of style loss

•  



Integration of both networks

Style transfer network

Style prediction network

• Style embedding
• Vector of length 100

• Conditional instance normalization:
• Shift and rescale activation 

channels
• Normalize feature maps with 

style embedding

•  
     

 



Style Transfer



Style transfer for data augmentation

• Data augmentation: Creating 
new training samples from 
existing ones

• Commonly used:
• Flipping, Translations, Scaling, 

Blurring etc.

• Style Transfer:
• Randomizing color, texture and 

contrast

• Preserving geometry



Style transfer for data augmentation

Style transfer network

Style prediction network



Style transfer for data augmentation

Style transfer network

Style prediction network



Random style embedding

• Sampling style embedding from probability distribution
• Normal distribution with mean and covariance of Painter By Number style dataset

• Strength of augmentation
• Mix style embedding with embedding of content image

•  

Style embedding Style of content image



Experiments

• Use random style transfer as augmentation technique for
• Image classification

• Cross-domain classification

• Depth estimation

• Traditional augmentation as reference
• Horizontal flipping, small rotations, zooming, random erasing, shearing, greyscale conversion 

and perturbations of hue, brightness and contrast

• Hyperparameter search
• Augmentation ratio 

• Augmentation strength (α)α))



Image classification

• STL-10 dataset

• 10 classes: animals and vehicles



Cross-domain classification

• Office dataset with 3 domains: Amazon, Webcam and DSLR



Stylized Images



Application

• Cross-domain adaptation for MRI Breast Segmentation
• T1  T2

• Use trained network from data augmentation paper
• Greyscale  RGB  Greyscale

• Apply same random style on each slice of 3D volume

T2-scan Restyled images



Github Codes

• Style Augmentation: Data augmentation via Style Randomization: 
https://github.com/philipjackson/style-augmentation

• Exploring the structure of a real-time, arbitrary neural artistic 
stylization network: 
https://github.com/tensorflow/magenta/tree/master/magenta/mode
ls/arbitrary_image_stylization

https://github.com/philipjackson/style-augmentation
https://github.com/tensorflow/magenta/tree/master/magenta/models/arbitrary_image_stylization
https://github.com/tensorflow/magenta/tree/master/magenta/models/arbitrary_image_stylization
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