
Semi-Supervised Classification with 
Graph Convolutional Networks

Presented by Shazia Akbar

Journal Club: 1st April 2019



Euclidean ConvNets
Local 

● Information encoded from local space

Stationary

● Can recognize the same patch regardless of 
location

Multiscale 

● Simple structures combined to make more 
abstract/complex structures



Slides from Xavier Bresson



Slides from Xavier Bresson





Graph Notation

N = Number of nodes (N=9)

Each node has feature vector, f_i

A = Adjacency matrix i.e. graph 
representation in binary form

● N x N matrix



Adjacency Matrix (A)

4

3

5

2

6

1

0 1 0 0 0 0

1 0 1 0 0 0

0 1 0 1 1 1

0 0 1 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0



Adjacency Matrix (A)

4

3

5

2

6

1

0 1 0 0 0 0

1 0 1 0 0 0

0 1 0 1 1 1

0 0 1 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0



Graph ConvNet



Graph ConvNet

W are the weights in layer l

ReLU



Graph ConvNet

W are the weights in layer l

ReLU

4

3

5

2

6

1



Graph ConvNet

W are the weights in layer l

ReLU

4

3

5

2

6

1

A = A + I



Graph ConvNet

Layer-wise backprop rule

Diagonal Node Degree Matrix 

(basically count of neighbours at each node)



Graph ConvNets Layers

Spectral Graph Convolutions

Filter parameterized by parameters in Fourier space:

Expensive!



Approximate graph filters
We can approximate parameters of our filter using Chebyshev polynomials:

“It depends only on nodes that are at maximum K steps away from central node 
(Kth order neighborhood)”



Approximate graph filters
We can approximate parameters of our filter using Chebyshev polynomials:

“It depends only on nodes that are at maximum K steps away from central node 
(Kth order neighborhood)”

Chebyshev 
polynomials which are 
iteratively defined



Layer-wise Linear Model

...

Can stack these graph conv to 
gather abstraction

When K=1…



Layer-wise Linear Model

...

Can stack these graph conv to 
gather abstraction

When K=1…

● Prevent overfitting
● Build deeper models 









After renormalization trick

Input data with C channels

Introduced with renormalization trick Filter parameters with CxF 
dimensions (F = no. of filters)



Semi-supervised



Semi-supervised
Forward pass:



Semi-supervised
Forward pass:

Compute cross entropy on known labels



Semi-supervised
Forward pass:

Compute cross entropy on known labels

Backprop using gradient descent

(Need entire dataset to fit into memory)



Experiments



Results

Iterative 
bootstrapping with 2 
regression classifiers

Performance of 10 
randomly drawn splits



Results

Still performs 
fairly well 

More info from 
neighbours

Similar performance 
with fewer variables





Results



Overcome memory issue
Authors suggest mini-batch SGD

FastGCN (Monte-carlo): https://openreview.net/forum?id=rytstxWAW

PinSage (Random walks): https://cs.stanford.edu/~jure/pubs/pinsage-kdd18.pdf 

https://openreview.net/forum?id=rytstxWAW
https://cs.stanford.edu/~jure/pubs/pinsage-kdd18.pdf


Work since 2017...
“Exploiting edge features in Graph Neural Networks”: 
https://arxiv.org/pdf/1809.02709.pdf 

“MotifNet: A motif-based Graph Convolutional Network for directed graphs”: 
https://arxiv.org/abs/1802.01572 

“A Comprehensive Survey on Graph Neural Networks”: 
https://arxiv.org/pdf/1901.00596.pdf 

https://arxiv.org/pdf/1809.02709.pdf
https://arxiv.org/abs/1802.01572
https://arxiv.org/pdf/1901.00596.pdf


Demo
https://tkipf.github.io/graph-convolutional-networks/ 

https://tkipf.github.io/graph-convolutional-networks/


Slides from Xavier Bresson


