Zoom-in-Net: Deep Mining Lesions for
Diabetic Retinopathy Detection
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Fig. 1. An overview of Zoom-in-Net. It consists of three sub-networks. M-Net and C-
Net classify the image and high resolution suspicious patches, respectively, while A-Net
generates the gated attention maps for localizing suspicious regions and mining lesions.



\01“

High Resolution Crops

Fig. 1. An overview of Zoom-in-Net. It consists of three sub-networks. M-Net and C-
Net classify the image and high resolution suspicious patches, respectively, while A-Net
generates the gated attention maps for localizing suspicious regions and mining lesions.



Traditional CNN structure to extract features
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Figure 2. Residual learning: a building block.
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Figure 2. Residual learning: a building block.

The authors argue that residual connections are inherently necessary for training very deep convolutional models. Our findings do
not seem to support this view, at least for image recognition



* Inception-ResNet
 They use the same network for two different reasons:
1. First, to perform disease level classification (5 levels)

2. Second, to pass extracted features to C-Net
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Image Level 1 Level 2 Level 3 Level 4 Selected regions

Fig. 3. From left to right: image, gated attention maps of level 1-4 and the selected
regions of the image. The level 0 gated attention map has no information and is ignored.



Classification from ResNet features
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Evaluation



“Only four bounding boxes generated from the automatically learned
attention maps are enough to cover 80% of the lesions labeled by an
experienced opthalmologist”



Algorithms val set test set

 Dataset was augmented (via rotations) Min-pooling [1 0.86 0.849
0.0 0.854 0.844

Reformed Gamblers 0.851 0.839

 M-Net was pretrained with ImageNet M-Net 0.832 0.825
M-Net+A-Net 0.837 0.832

_ _ Zoom-in-Net 0.857 0.849

e Learning rate was decreased during Ensembles 0.865 0.854

training Table 2. Comparison to top-3 entries on

Kaggle’ challenge.



Task 1: Non referable (Grade 0/1), Referable (Grade 2/3)

Task 2: Normal vs Abnormal
SVM was trained on EyePACS and then tested on Messidor

If classified as level O then normal



Method AUC Acc.

Method AUC Acc.
Lesion-based [12] 0.760 -
Ny _ Splat feature/kNN [17] 0.870 -
Fisher Vector [12] 0.863 -
VNXK/LGI [18] 0.870 0.871
VNXK/LGI [18] 0.887 0.893
CKML Net/LGI [18]  0.862 0.858
CKML Net/LGI [18]  0.891 0.897 )
. Comprehensive CAD [14] 0.876 -
Comprehensive CAD [14] 0.91 - o
o Expert A (14 0.922 -
Expert A [14 0.94 - S
S Expert B |14 0.865 -
Expert B 14 0.92 - Zoom-in-Net 0.921 0.905
Zoom-in-Net 0.957 0.911

Table 3. AUC for referable/nonreferable Table 4. AUC for normal/abnormal



